Power and Action Orientation: Power as a Catalyst for Consumer Switching Behavior

YUWEI JIANG
LINGJING ZHAN
DEREK D. RUCKER

Building on an action-orientation perspective of power, original hypotheses regarding power and consumer switching behavior are presented. Because high power is associated with a readiness to act, and switching behavior often requires taking action in some form, inducing consumers to feel powerful is hypothesized to increase consumer switching. Multiple experiments provide support for this perspective along with evidence for the process via both moderation and mediation. This works contributes to the consumer switching literature by demonstrating power as a new psychological catalyst for switching behavior. This work also adds to the power literature by distinguishing between goal priming and semantic priming accounts of the action orientation of high power. Specifically, consistent with a goal priming account, engaging in action is found to sate consumers’s subsequent need for action as opposed to maintain or increase consumers’ desire to act, as might be predicted from a semantic priming account.

Despite the observation that consumers sometimes exhibit loyalty in their purchasing behavior (e.g., Seetharaman 2004), consumers are also known to deviate from buying the same product or brand (see Blattberg and Neslin 1990 for a review). This raises a question that marketers (see Nowlis and Simonson 2000) have been interested in for decades: what factors drive consumers to stay with, or abandon, a product or brand? Insights into switching behavior can help to retain current customers and may inform brands how to unyoke consumers from competing brands, making an understanding of consumer switching behavior of great practical importance to marketers.

Past endeavors on consumer switching behavior have examined marketing mix factors such as price discounts (Dodson, Tybout, and Sternthal 1978; Krishnamurthi and Raj 1991), retail promotion (Grover and Srinivasan 1992; Sun, Neslin, and Srinivasan 2003), and advertising exposure (Deighton, Henderson, and Neslin 1994; Tellis 1988). However, scholars have also recognized that internal and psychological factors can drive consumers’ orientation toward switching products or brands (see Drolet 2002; Kahn 1995; Raju 1980, 1984; Redden 2008). In this research, we examine the impact of one specific psychological factor on consumers’ switching behavior: power. In doing so, we use the consumer switching behavior platform as a means to reveal novel insights behind the psychology of power.

CONSUMER SWITCHING BEHAVIOR

Consumer switching behavior can happen both across brands and within the same brand. For example, in terms of switching across brands, consumers may want to switch from their existing internet service provider to a different one. As already noted, marketing mix factors are one important antecedent of potential brand switching. Researchers have found that price discounts such as media-distributed coupons and cents-off deals induce brand switching (Dodson et al. 1978). Sales promotions also affect brand switching with a large portion of the sales promotion elasticity (from 40% to 94%, depending on the product category) attributed to brand switching (see Bell, Chiang, and Padmanabhan 1999; Bucklin, Gupta, and Siddarth 1998). Scholars have
also recognized that, depending on the context and product category, advertising can reduce (Tellis 1988) or increase brand switching (Deighton et al. 1994).

Consumers can also switch their choices within the same brand (Kahn 1995; Inman 2001). For example, consumers may stick with the same brand of ice cream but switch the flavor for their Friday night indulgence. Switching within the same brand might occur because of changes in preferences (Hellier et al. 2003), introduction of a new product model (Mahajan, Muller, and Bass 1990), a desire for variety (McAlister and Pessemier 1982; Van Trijp, Hoyer, and Inman 1996), or as a result of a product stock-out (Sloot, Vervloet, and Franses 2005). For instance, Inman (2001) found that consumers are more likely to switch within brand when new sensory attributes are introduced such as a brand rolling out a new product flavor.

Given the importance of the phenomenon of consumer switching behavior, researchers have also attempted to better understand the psychological factors that affect switching behavior (see Dijksterhuis 2002; Kahn 1995; Raju 1980; Redden 2008). For example, Raju (1980) identified stimulation as an important psychological determinant of brand switching. Optimum stimulation level (OSL) is a personality trait that characterizes an individual’s general response to environmental stimuli (Raju 1980). High OSL consumers have a greater tendency to switch their products and seek out variety in their product choices because of a desire to explore the unfamiliar (McAlister and Pessemier 1982; see Kahn 1995 for a review). And consumers are less likely to switch products if a retailer keeps the store environment very stimulating (vs. static) over time, because a consumer’s psychological need for stimulation is already satisfied by the environmental stimuli in the store (Menon and Kahn 1995). This article examines how a previously unexplored psychological factor—power—affects consumer switching behavior.

POWER

Power as a Psychological Construct

Power—defined as “asymmetric control over valued resources in social relations” (Magee and Galinsky 2008, 361)—has been argued to be one of the most fundamental social constructs within the bedrock of society (see Galinsky, Rucker, and Magee 2014; Keltner, Gruenfeld, and Anderson 2003; Rucker, Galinsky, and Dubois 2012). Because of its prevalence, power arises not only from structural factors such as socioeconomic status (Bruner and Goodman 1947) but is a mind-set that can be evoked through episodic recall (Galinsky, Gruenfeld, and Magee 2003), semantic priming (Magee, Galinsky, and Gruenfeld 2007), or even physical postures (Carney, Cuddy, and Yap 2010). Importantly, power from these various sources has been found to have transformative effects on consumer behavior ranging from consumers’ response to status objects (Rucker and Galinsky 2008) to their perceived control of gambles (Kim and McGill 2011; see Rucker et al. 2012 for a review).

One consequence of activating a state of high power in consumers is that it fosters an agentic orientation where consumers act as independent agents, manifesting in more self-focused and self-assertive behaviors (Galinsky et al. 2014; Rucker et al. 2012). Consistent with this theoretical framework, past research has found that a state of high power can lead individuals to become more self-oriented and less likely to take others’ perspectives (Galinsky et al. 2006), to spend more resources on the self compared to others (Rucker, Dubois, and Galinsky 2011), and to foster an illusion of control (Fast et al. 2009).

Power and Action Orientation

One prominent finding in the power literature is that individuals experiencing a psychological state of high power tend to become more action oriented. Power activates a general tendency of approach (Keltner et al. 2003) and agency (Rucker et al. 2012), which increases individuals’ propensity toward action. In a now classic test of this hypothesis, Galinsky and colleagues (2003) showed that participants placed into incidental states of high power, compared to participants in low-power or baseline conditions, were more likely to take actions such as asking for an additional card in a game of blackjack or volitionally moving an annoying cooling fan aimed to blow air in their face.

Although Galinsky et al. (2003) documented that high power produced a greater proclivity to act, the specific nature of the mechanism underlying this effect has not been systematically explored. In particular, there appear to be at least two possible explanations for this effect: semantic priming and goal priming. Semantic priming involves the activation of specific mental representations that trigger the spreading activation of related concepts (Srull and Wyer 1979; Wyer and Srull 1989). Semantic priming can influence behavior in a nonmotivational way via a simple perception-to-behavior link. Specifically, the mere activation of a concept can activate behaviors associated with that concept and, eventually, the execution of those behaviors (Dijksterhuis et al. 2005; Higgins, Bargh, and Lombardi 1985). For example, seeing a negative social stereotype (e.g., an overweight person) can increase stereotype-consistent behavior (e.g., eating indulgent foods; Campbell and Mohr 2011). One reason to expect that the power to action link might operate through such a mechanism is that people may have observed those with power tending to take action (i.e., repeated pairing of the constructs). This might occur as those with power often have more freedom to do as they please, leading to a pairing of power and taking action in people’s daily observations, which could lead the constructs to become intertwined. Importantly, a semantic priming account suggests greater construct accessibility, which could remain stable over time or even snowball and become more accessible as time passes (Förster, Liberman, and Friedman 2007).

In contrast to semantic priming, goal priming involves the conscious or unconscious activation of goals consistent with goal attainment in subsequent tasks (Chartrand et al. 2008). For instance, after being exposed to words invoking
prestige goals, a greater portion of participants chose high-priced Nike socks over low-priced Hanes socks (Chartrand et al. 2008). Power might activate a goal as it has been argued that power can produce a general tendency toward agency (Rucker et al. 2012), which is tied to goals of competency, mastery, and bettering the self (Bakan 1966). That is, power can elicit a self-focused drive for improvement, which may foster a goal to take action.

The question of whether a situational cue activates a semantic representation or a goal has received increasing attention within the fields of both psychology and marketing (e.g., Fitzsimons, Chartrand, and Fitzsimons 2008; Förster et al. 2007; Sela and Shiv 2009). A review by Förster and colleagues (2007) articulated several important principles to distinguish goal priming and semantic priming. For example, effects of goal priming increase following a delay and persist longer (Bargh et al. 2001; Förster, Liberman, and Higgins 2005; Ramanathan and Menon 2006). One critical difference between semantic and goal priming is that goal priming is a motivational process, involving post-attainment decrements in motivation. In other words, the effect of goal priming is diminished when a goal is fulfilled. However, semantic priming is about the activation of constructs; therefore, the activation should persist or even increase as people engage in behavior related to semantic priming. As will be delineated, this distinction is not only important to better understand the nature of the power to action link but has direct implications for when and how a state of high power might affect consumer switching behavior.

POWER AND CONSUMER SWITCHING BEHAVIOR

Although action might occur in the form of physical movement, physical movement is not a required component of action (Greve 2001). Many choices and decisions involve certain levels of psychological action (Markus and Schwartz 2010). Indeed, in the original work by Galinsky and colleagues (2003), high power provoked both physical action (e.g., getting up to move a fan blowing in one’s face) and mental action (e.g., asking for another card in a simulated game of blackjack).

The experience of action is not only influenced by the mental decisions and physical movements during the action but also by the consequences of action (Moore et al. 2009). In many situations, action is forgone due to people’s preference to do nothing, a classical phenomenon called “inaction inertia” (Anderson 2003). This reluctance to act is often represented in consumer behaviors such as “status quo bias” (the tendency to maintain one’s current state; Samuelson and Zeckhauser 1988), “omission bias” (the tendency to be less punitive for negative outcomes caused by a failure to act; Spranca, Minsk, and Baron 1991), and “choice deferral” (the tendency to put off making a decision; Dhar and Nowlis 2004).

In contrast to these inaction inertia behaviors, we advance the idea that the decision to switch to a new brand or product often involves action. Indeed, a change or switch often requires a departure from the prior or default choice, which provides a representation of an action. Bridging the ideas that high power leads to an activated semantic concept of action or a goal of action, and switching behavior often requires or represents action, we reason that placing consumers in a high state of power may increase their propensity to switch products or brands. That is, switching behavior may serve as a means to satisfy the action orientation of the powerful. Formally, this leads to our first hypothesis:

H1: States of high power will prompt consumers to be more inclined to switch products or brands than states of low power.

Although we introduce the argument that power affects switching behavior because action and switching behavior are often linked, we recognize that switching and action can be empirically separated. That is, though switching itself represents a certain level of psychological action, nonswitching options should break this pattern if they require—or are associated with—a higher level of psychological or physical action. Based on our proposition that a desire for action would lead the powerful to engage in greater switching, we predict that people will opt to not switch (i.e., stick with their old brand or product within a brand portfolio) when not switching or staying is associated with greater action.

H2: If a nonswitching option is associated with greater action than a switching option, states of high power will prompt consumers to be more inclined to stay with their current products or brands, than states of low power.

Finally, the relationship between power and consumer switching behavior critically depends on whether or not power stimulates action based on semantic priming or goal priming. Consistent with the first hypothesis, both perspectives predict that people with a high state of power will be more likely to engage in switching behavior. However, these two perspectives make divergent predictions and thus can be empirically disentangled, regarding whether the need for action can be sated prior to a switching opportunity. Specifically, as noted previously, semantic priming suggests that engaging in action would either maintain or increase the accessibility of action. As a consequence, if the power to action link is a result of semantic priming, performing an action should not affect participants’ subsequent preference for switching; in fact, it may even further stimulate action orientation by making the related concepts more accessible.

In contrast, if the power to action link is a result of goal priming, then performing an action should reduce subsequent switching behavior. In such an instance, a goal to act should be, at least partly, fulfilled by action. This is consistent with a key proposition presented by Förster et al. (2007; see also Förster et al. 2005; McCulloch et al. 2011; Sela and Shiv 2009) that the effects of goal priming diminish when a goal is fulfilled. The power literature has not taken a strong stance on these two possibilities. As such, testing
these competing hypotheses represents both an important objective to understand the link between power and consumer switching behavior and offers the potential for further insight into the nature of the action orientation accompanying power more generally. Given prior empirical research is consistent with both hypotheses to date, we introduce the following rival hypotheses:

H3a: If power affects action through semantic priming, performing an initial action should not reduce consumer switching in a subsequent task.

H3b: If power affects action through goal priming, performing an action should sate the goal and therefore reduce consumer switching in a subsequent task.

OVERVIEW AND CONTRIBUTION

The present research examines the effect of incidentally heightened states of power on consumer switching behavior. We first demonstrate that placing consumers in a high state of power leads to a greater propensity to engage in product/brand switching in the context of both a one-time brand switching decision (experiment 1a) and sequential product choices (experiment 1b). Experiment 2 provides evidence for an action orientation account over a preference for variety seeking. Experiment 3 supports our action orientation perspective on consumer switching by showing that the effect of power is reversed when nonswitching is associated with more action. Experiment 4 tests a semantic versus goal priming account by examining whether high power creates a general orientation toward action or a goal toward action that can be sated. Finally, experiment 5 demonstrates that the effect of power on consumer switching is mediated by an action orientation. As a whole, this article contributes to the understanding of the relationship between power and consumer switching behavior and, more generally, to the nature of the action orientation of high power. Across experiments, target sample sizes were predetermined as a function of a set period of time. In addition, we report all data exclusions (if any), all manipulations, and all hypothesis-related measures in the study. In some studies we collected additional measures for exploratory purposes that are available from the authors upon request.

EXPERIMENT 1

Experiment 1 tested whether a relationship existed between power and consumers’ product/brand switching tendency (hypothesis 1). We tested this hypothesis using two different settings and different measures of consumer switching behavior. Experiment 1a manipulated participants’ power and examined their intention to gather further information from a new service provider, an indicator of a potential interest to switch brands in a one-time choice context. Experiment 1b looked at brand switching directly by calculating participants’ actual level of brand switching in a series of sequential brand choices.

In addition to testing our core hypothesis, each study contained additional measures to assess alternative explanations. Specifically, one might argue that a state of high power would lead to greater optimism (Anderson and Galinsky 2006); consumers may believe the new brand would be better than the old brand, and this might foster brand switching. This alternative account, however, suggests that switching behavior is caused by a difference in consumers’ perception toward the current and the new brand. To test this possibility, in experiment 1a participants’ predicted satisfaction between a current brand and a new brand was assessed. In addition, one might wonder if power would affect brand switching by creating differences in mood. Although such manipulations often do not affect participants’ mood (see Galinsky et al. [2014] for a review), to distinguish power from mood, in experiment 1b mood was measured.

Experiment 1a: Internet Service Provider Selection

Method. One hundred forty-nine Hong Kong undergraduate students participated in exchange for a small monetary payment. Participants were randomly assigned to one of two power priming conditions (low vs. high). Participants failed to finish the experiment and were excluded from all analyses.

Participants first completed an episodic priming manipulation of power, which has been used frequently in previous research. Specifically, participants were randomly assigned to recall an event during which they felt powerless or powerful, ostensibly as a task testing their memories (e.g., Galinsky et al. 2003; Rucker and Galinsky 2008). Immediately after this task, in order to ensure that the power manipulation was successful, we asked participants to indicate the extent to which they felt powerful on a 7-point scale (1 = “I feel powerless;” 7 = “I feel powerful”).

Next, participants read a consumption scenario that instructed them to imagine that they moved into a new apartment and needed to choose an Internet service provider (ISP). They were told that company A was the default ISP of their building, and the residents were generally satisfied with its service. Participants were informed that company B also provided internet service in this area, but details about its service quality or price were not available. After reading the scenario, participants were asked to choose between two options: Option A was to “continue to use service from company A”; option B was to “find out more about service from company B.” Thus, option B would be consistent with a greater openness and a first step toward switching. Participants then estimated the service quality provided by companies A and B using two 7-point scales (1 = “bad service quality;” 7 = “excellent service quality”), with order counterbalanced. As in all experiments, at the end of the study participants were debriefed, thanked, and dismissed.
Manipulation Check. Participants reported feeling more powerful in the high-power condition ($M = 4.59$) than in the low-power condition ($M = 2.97$; $F(1, 145) = 52.39, p < .001$).

Switching Intention. The ratio of participants choosing option B was calculated as the index for consumer switching tendency. We found that participants with a high state of power were more likely to consider switching to another brand in the form of seeking out additional information than participants primed with low power (46.6% vs. 28.4%, respectively; $\chi^2(1) = 5.19, p = .027$).

Service Expectation. Participants’ expected service quality from both companies was submitted to a 2 (high power vs. low power) x 2 (company A vs. company B) mixed-model ANOVA. Results revealed two main effects. Participants expected that the existing company A would have better service quality than the new company B ($M = 5.00$ vs. 4.08, respectively; $F(1, 145) = 81.27, p < .001$), and high-power participants had a relatively lower expectation of the service quality of these two companies than low-power participants ($M = 4.45$ vs. 4.63, respectively; $F(1, 145) = 5.41, p = .021$). The interaction effect was not significant ($p > .20$), indicating that high- and low-power participants did not have comparatively different expectations of company A versus company B.

Experiment 1b: Candy Choice

Method. One hundred and six Hong Kong undergraduate students participated in exchange for a small monetary payment. They were randomly assigned to one of two power conditions (low vs. high).

At the beginning of the research session, power was manipulated by assigning participants to the role of a manager or subordinate in a subsequent task (Anderson and Berdahl 2002; Galinsky et al. 2003; Rucker and Galinsky 2009; Rucker et al. 2011). Participants were told that they would be paired with another student in the same room to complete a group task later. They were told they were assigned to be a manager or a subordinate role in the task with managers having power over subordinates, and they read corresponding descriptions of their roles. Then participants indicated the extent to which they felt powerful on a 7-point scale ($1 = \text{"I feel powerless,"}$ $7 = \text{"I feel powerful"}$) and also completed two 7-point scales measuring their mood ($1 = \text{"I feel bad/sad,"}$ $7 = \text{"I feel good/happy"}$).

Next, participants were told that while the group task was being set up they would complete an unrelated task for another research project. Participants were instructed to imagine participating in a school activity for four consecutive Friday nights in the coming month. Participants were told that they could get one free candy bar each night, and they were asked to select candy bars for the four nights from four brands: KitKat, Crunch, Toblerone, and TimeOut. Participants could select any combination of candy bars across the four nights (e.g., all the same, all different). A pretest of 20 undergraduates from the same subject pool confirmed that participants had similar familiarity with these four candy bars ($F < 1$), and no systematic differences existed in their overall liking of the candy bars ($F(3, 57) = 1.05, p > .38$).

Manipulation Check and Mood Measures. Participants reported feeling more powerful in the high-power condition ($M = 4.62$) than in the low-power condition ($M = 3.59$; $F(1, 104) = 18.32, p < .001$). Analysis did not reveal any difference between the two power conditions in either of the two mood measures (all $p > .10$).

Switching. Following prior research on consumer switching (e.g., Kahn and Isen 1993; Menon and Kahn 1995), we constructed three measures to index consumer switching behavior in this experiment: (1) number of different brands that were selected (ranging from 1 to 4), (2) number of times switching from one brand to another (ranging from 0 to 3), and (3) the Herfindahl-Hirschman index (HHI). The HHI is an index used to capture the degree of variety under different contexts; a smaller index suggests a higher degree of variety seeking (e.g., Nowlis, Dhar, and Simonson 2010; Simonson and Winer 1992).

Consistent with our theorizing, participants in the high-power condition showed a higher degree of brand switching than those in the low-power condition. Compared to low-power participants, high-power participants included more brands in their choice sets ($M = 3.65$ vs. 3.31, respectively; $F(1, 104) = 4.56, p = .035$), performed more switches in their choices ($M = 2.94$ vs. 2.65, respectively; $F(1, 104) = 5.28, p = .024$), and had a lower level of HHI ($M = 0.29$ vs. 0.37, respectively; $F(1, 104) = 5.83, p = .018$).

Discussion

Using different manipulations of power and different dependent variables, experiments 1a and 1b provided convergent support for our hypothesis that incidentally heightened states of power can affect consumers’ propensity to switch brands (hypothesis 1). The results of experiment 1 are also incompatible with alternative explanations for the effect of power on consumer switching. As noted earlier, one might argue that consumers with high power may be more optimistic about their future; they may wishfully believe that the new brand would be better than the old brand. However, experiment 1a found no differentiating effect of power on the expected service quality from the old and the new brands. Similarly, experiment 1b measured and found no effect of mood.

EXPERIMENT 2

An alternative explanation of our results in experiment 1b is that a high-power state generated a general variety-seeking tendency, and thus consumers switched brands to achieve a more varied product assortment in their final basket of products. Experiment 2 sought to distinguish this explanation from our account by assigning participants to one of two very different choice scenarios. In the first sce-
nario, participants made one simultaneous choice that allowed them to choose more or less variety but held the opportunity for action constant. In the second scenario, participants made a number of sequential choices that allowed action in the form of switching. If power primarily affects variety seeking, then we should observe greater variety in both scenarios. However, if our results are due to a greater desire to engage in action, then the results should only be observed when people can engage in switching (i.e., the second scenario).

A second purpose of experiment 2 was to test whether our effect generalizes to consumer switching behaviors among product choices within the same brand. Where experiments 1a and 1b looked at switching between different brands, experiment 2 looks at switching between different products (i.e., different flavors of ice cream) of the same brand.

Method

A total of 280 participants from the United States were recruited through Amazon Mechanical Turk and participated in exchange for a small monetary incentive. Ten participants were excluded from analyses because they failed to follow instructions or finish the experiment, which left us with a final data sample of 270 participants. In this experiment we collected additional demographic measures as follows. Our sample included 146 men and 124 women with an average age of 35 years. Two hundred and twelve participants were European American, whereas the remaining 58 participants were African American, Asian American, Hispanic American, or other ethnicities. As for the socioeconomic distribution of the sample, 61.5% of participants reported annual incomes less than $50,000, and 45.9% reported high school as their highest level of education.

Participants were randomly assigned to conditions in a 2 (power: low vs. high) × 2 (choice type: simultaneous vs. sequential) between-subject factorial design. Participants were instructed that they would be finishing a few unrelated tasks for different research projects. They first completed the same episodic priming manipulation of power as in experiment 1a. Next, participants were asked to complete a consumer decision making survey. Participants imagined that they were participating in a series of community activities for three consecutive Friday nights in the coming month. Participants were told that these activities were sponsored by a local supermarket and that they could get one free minicup of ice cream each night. There were three flavors of ice cream available—vanilla, strawberry, and chocolate—and participants could select any combination of ice-cream cups across the three nights.

Participants in the simultaneous choice conditions were then asked to choose one option from a list of 10 options including all possible combinations of flavors for a pack of three ice-cream cups. This meant they could choose variety or not, but that they only made a single choice, holding the amount of action constant. Participants in the sequential choice conditions, however, were asked to choose the flavor of ice cream they wanted (from the three available flavors) for the first night, then the second night, then the last night. Thus, this procedure allowed them to take action in the form of switching their decision.

Results

As in experiment 1b, we constructed three measures to index consumer switching behavior in this experiment: (1) number of different flavors that were selected (ranging from 1 to 3), (2) times of switching from one flavor to another (ranging from 0 to 2), and (3) the HHI (ranging from .33 to 1).

A 2 (power: low vs. high) × 2 (choice type: simultaneous vs. sequential) ANOVA on number of flavors selected revealed a significant main effect of power ($F(1, 266) = 7.59, p = .006$), qualified by a significant power × choice type interaction ($F(1, 266) = 10.55, p = .001$; see fig. 1A). Planned comparisons showed that in the sequential choice conditions, high-power participants included more ice-
cream flavors in their choice sets than those in the low-power condition ($M = 2.32$ vs. 1.78, respectively; $F(1, 266) = 17.54, p < .001$), while the difference between high- and low-power participants disappeared in the simultaneous choice conditions ($M = 2.09$ vs. 2.14, respectively; NS).

Since the number of times switching from one flavor to another cannot be calculated for participants in the simultaneous choice conditions (because they chose one pack of three flavors simultaneously, there was no flavor switch per se), we ran a simple contrast only in the sequential choice conditions. Replicating experiment 1b, high-power participants performed more switches in their product choices than those in the low-power condition ($M = 1.42$ vs. 1.08, respectively; $F(1, 129) = 4.69, p = .032$).

Finally, a 2×2 ANOVA on HHI revealed a significant main effect of power ($F(1, 266) = 5.18, p = .024$), qualified by a significant power \times choice type interaction ($F(1, 266) = 8.77, p = .003$; see fig. 1B). Planned comparisons showed that in the sequential choice conditions, high-power participants had a lower level of HHI than those in the low-power conditions ($M = .55$ vs. $.71$, respectively; $F(1, 266) = 13.35, p < .001$), while the power effect disappeared in the simultaneous choice conditions ($M = .58$ vs. $.56$, respectively; NS).

Discussion

This experiment replicated the effect of power on switching in the previous experiments but only when participants made decisions sequentially. These results seem to be more consistent with the action orientation account of our effect but not a general variety seeking explanation as we observed no preferences for variety when the choice was made simultaneously. In addition, results suggest the effect of power on switching is not restricted to brand switching but also applies to other types of consumer switching behavior, such as product switching within the same brand.

EXPERIMENT 3

According to our theoretical perspective, the decision of switching to a new brand or product represents a psychological action, which leads switching options to be preferred by consumers in a high state of power. A switching decision, however, does not need to be inextricably linked with greater action. For example, if the decision to stay with an existing brand or product was associated with more psychological or physical action, then our action-orientation perspective would suggest that the effect of power on switching would reverse (hypothesis 2). That is, if the underlying process driving our observed effects is truly an action orientation, then high power should not unilaterally lead people to switch in all cases. Rather, high power should lead to greater switching when switching provides an opportunity for action but less switching when not switching provides an opportunity for action. We tested this possibility in experiment 3.

Method

A total of 201 participants from the United States were recruited via Amazon’s Mechanical Turk and participated in exchange for a small monetary incentive. Our sample included 126 men and 75 women with an average age of 32 years. One hundred fifty participants were European American, whereas the remaining 51 participants were African American, Asian American, Hispanic American, or other ethnicities. As for the socioeconomic distribution of the sample, 58.7% of participants reported annual incomes less than $50,000, and 42.3% reported high school as their highest level of education.

Participants were randomly assigned to conditions in a 2 (power: low vs. high) $\times 2$ (action perception: switching associated with taking action vs. nonswitching associated with taking action) between-subject factorial design. Participants first completed the same episodic priming manipulations of power as in experiment 1a, as well as a manipulation check. Then, as part of a supposedly unrelated task, participants read a consumption scenario that instructed them to imagine that they moved into a new apartment and needed to choose an Internet service provider (ISP). They were told that company A was the ISP they used in their old apartments, and they were in general satisfied with its service. Participants were also informed that there was another company (company B) providing internet services in this area, which was described as a good company although they never used its service before.

After reading the scenario, participants were asked to indicate their preference between two options. We manipulated the perception of action by varying the procedures to subscribe to the service from these two companies. In the switching associated with taking action conditions, participants were told that option A was to “continue to use company A. In this case, you will not need to do anything; just one phone call and company A will connect you to the internet.” Option B was to “switch to company B In this case, you will need to go to company B’s website to download and print an installation form, sign it, and then fax or mail back to company B.” In the nonswitching associated with taking action conditions, however, participants were told that option A was to “continue to use company A. You will need to go to company A’s website to download and print an installation form, sign it, and then fax or mail back to company A.” Option B was to “switch to company B. In this case, you will not need to do anything; just one phone call and company B will connect you to the internet.” Then participants were asked to indicate their preference on a 10-point scale (1 = “strongly prefer option A”; 10 = “strongly prefer option B”). This manipulation empirically separated switching from action allowing us to see whether power led to a preference for switching regardless of whether it required action or, consistent with an action-orientation perspective, led to switching or nonswitching depending on which outcome was associated with more action.

After participants indicated their preferences, as a manipulation check of action perception, participants were
asked which company required them to take more “actions” if they decided to use its service (1 = company A, 9 = company B). In addition, to control for risk perceptions of the new company (company B), participants were asked to indicate (1) the extent to which they felt it was risky to choose company B, and (2) the extent to which they felt uncertain about choosing company B (1 = “not at all,” 9 = “very much”). These two measures correlated at .73 and averaged to create a perceived risk index. Finally, to control for quality perceptions of the two companies, participants were asked to what extent they thought company A would be better than company B (1 = “not at all,” 9 = “very much”).

Results

Manipulation Check. Participants reported feeling more powerful in the high-power (M = 6.32) than in the low-power condition (M = 4.75; F(1, 197) = 31.29, p < .001). Participants also indicated that they felt they needed to take more “actions” to switch brands in the switch associated with taking action conditions (M = 8.05) than in the non-switch associated with taking action conditions (M = 2.28; F(1, 197) = 476.90, p < .001).

Switching. A 2 (power: low vs. high) × 2 (action perception: switching associated with taking action vs. non-switching associated with taking action) ANOVA on brand switching tendencies revealed a significant main effect of action perception (F(1, 197) = 139.92, p < .001). Participants indicated lower preference to switch to a new brand in switch associated with taking action conditions (M = 2.60) than in non-switch associated with taking action conditions (M = 6.68). This main effect suggested that participants in general were predisposed not to take action, which is sensible from the perspective of consumers defaulting to the easiest option. More importantly, however, there was a significant power × action perception interaction (F(1, 197) = 11.27, p = .001; see fig. 2). Planned comparisons showed, in the switching associated with taking action conditions, high-power participants indicated higher preference to switch than those in the low-power condition (M = 3.19 vs. 2.09, respectively; F(1, 197) = 4.83, p = .029). However, in the non-switching associated with taking action conditions, high-power participants indicated a lower preference to switch than those in the low-power condition (M = 6.08 vs. 7.37, respectively; F(1, 197) = 6.49, p = .012).

Risk and Quality Perceptions. A 2 × 2 ANOVA on perceived risk of choosing company B revealed only a significant main effect of action perception. Participants felt riskier choosing company B in switching associated with taking action conditions (M = 5.36) than in the non-switching associated with taking action conditions (M = 4.41; F(1, 197) = 11.81, p = .001). Similarly, a 2 × 2 ANOVA on quality perception also only showed a significant main effect of action perception. Participants reported company A was better than company B in the switching associated with taking action conditions (M = 5.38) than in the non-switching associated with taking action conditions (M = 4.31; F(1, 197) = 15.33, p < .001).

Discussion

Consistent with our theoretical perspective, experiment 3 demonstrated that it is not that high power leads to a preference for switching per se, but that it leads to a preference for action, which typically facilitates switching. However, high-power consumers can be more inclined to stay with their existing brand when such a choice is associated with greater action. Again, in many cases switching and action may often co-occur, but conceptually the present study advances our understanding by showing that it is indeed an association with taking action that leads to the switching behavior.

EXPERIMENT 4

Experiments 1–3 provided evidence of a link between power and consumer switching, consistent with our proposed action-orientation perspective. However, it remains unclear whether these results are driven by power activating a semantic concept of action that leads to concept-consistent behaviors or power stimulating a goal of action. As noted earlier, one key differentiator between these two perspectives is whether the effect of power on action orientation can be sated by a subsequent action or not. As such, experiment 4 tested these two rival conceptualizations against one another by introducing a theoretically meaningful moderator—real physical action. If the effect of power on consumer switching behavior is caused by an activated semantic concept of action, then performing a physical action should not affect participants’ subsequent preference for action. In fact, it
might even increase switching by making the concept of action more accessible. In contrast, if the effect of power on consumer switching behavior is caused by a goal to act, then allowing participants to perform a physical action should reduce the need for subsequent action. The idea that an initial satiation task can help tease apart these perspectives is consistent with an ample amount of past literature on goal pursuit (Forster et al. 2005, 2007; see also Bargh et al. 2001; Sela and Shiv 2009).

Method

One hundred sixty-seven Hong Kong undergraduate students participated in exchange for a small monetary payment. They were randomly assigned to one of four conditions in a 2 (power: low vs. high) × 2 (physical action: no action vs. action) between-subject factorial design. Six participants were excluded from analyses because they did not finish the experiment or they failed to follow instructions.

Upon arrival each participant received a new ballpoint pen. They were asked to answer all the questionnaires using the pen and informed that they could take the pen home as a free gift. Power was manipulated using the role-playing task described in experiment 1b, and participants completed the same power manipulation check as before. After being assigned to a high- or low-power role but before engaging in any actual interaction, participants were asked to complete an ostensibly unrelated study on product evaluation. Each participant received a rubber massage ball placed in a transparent plastic bowl. The ball was handheld and approximately 8 centimeters in diameter. In the action conditions, participants were asked to take the ball out of the bowl and to squeeze it for about 30 seconds. In the no-action conditions, participants were told to simply observe the ball for 30 seconds without touching the ball or the bowl. After this, participants were asked to evaluate the ball on three 9-point scales (1 = “bad/negative/unfavorable,” 9 = “good/positive/favorable”; α = .86).

After the “massage ball evaluation task,” participants were told that another pen was available. They were informed that the new ball-point pen was from a different brand but contained the same ink and was similar in price. Participants were told they had the choice to keep the pen they were currently using or select the new pen as a free gift to bring home. Participants were asked how much they wanted to switch pens on a 9-point scale (1 = “not at all”; 9 = “very much”). Finally, participants evaluated the pen they were using as well as their expectations of the other pen. Both sets of ratings were completed on three 9-point scales (1 = “bad/negative/unfavorable,” 9 = “good/positive/favorable”; α = .91 and .96 for the old and new pens, respectively).

Results

Manipulation Check. Participants reported feeling more powerful in the high-power priming condition (M = 4.16) than in the low-power priming condition (M = 3.61; F(1, 157) = 7.65, p = .006).

Switching. A 2 (power: high vs. low) × 2 (action: action vs. no action) ANOVA revealed a significant main effect of physical action (F(1, 157) = 5.67, p = .018), qualified by a significant power × action interaction (F(1, 157) = 4.34, p = .039; see fig. 3). Planned comparisons showed that in the no-action conditions, high-power participants showed higher preferences for pen switching than low-power participants (M = 4.95 vs. 4.03, respectively; F(1, 157) = 4.65, p = .033). However, after the physical execution of action, there was no differences between high- and low-power participants’ preferences for switching (M = 3.55 vs. 3.93, respectively; NS). From another perspective, among high-power participants, the opportunity for action had a significant effect on their switching behavior (F(1, 157) = 10.00, p = .002) but had no effect among low-power participants (F < 1, NS).

Evaluations of Massage Balls and Pens. ANOVA analysis did not show any significant effect in participants’ evaluation of the ball among the four conditions (all p > .10). We submitted the pen evaluations to a 2 (high power vs. low power) × 2 (no action vs. action) mixed-model ANOVA. Results showed that participants expected the current pen to be better than the new pen (M = 6.60 vs. 6.18, respectively; F(1, 157) = 9.95, p = .002). We also observed a significant main effect of action such that participants increased their evaluations of both pens after physical actions (M = 6.19 vs. M = 6.57, respectively; F(1, 157) = 6.62, p = .011). No other effects were significant (all p > .10).

Discussion

The results of experiment 4 provide converging evidence that power is linked to an action orientation that in turn
prompts consumer switching behavior. More importantly, consistent with hypothesis 3b, we showed that this action orientation can be sated by real physical action. When participants were given an opportunity to perform a physical action (e.g., squeezing a rubber ball), the tendency for switching was eliminated. These findings add a new fundamental insight to the power literature. Although prior research has linked power to action (Galinsky et al. 2003), untested was whether this resulted from an activated semantic concept of action or a goal of general action that could be fulfilled. The present research weighs in on this unresolved issue by suggesting that the power to action orientation link appears more consistent with the goal priming account, since it was sated by a physical action. Findings of this experiment also contribute to our understanding of action orientation. As a psychological construct, action orientation has been studied extensively in the psychology literature (e.g., Koole and Jostmann 2004; Koole and Van den Berg 2005; Kuhl 1981, 1984). We provide the first evidence that the action orientation of a high-power state can be sated by real physical actions.

Finally, one might wonder whether the results of the prior experiments were due to high power exhibiting an increased action orientation or low power exhibiting an “action inhibition.” Importantly, Galinsky et al. (2003) suggest that it is high power that increases action as opposed to low power reducing action. The present experiment can also be used to weigh in on this matter. Specifically, had our results in the previous studies been driven by low-power reducing switching, then we would not have expected the strong difference observed between high power as a function of the opportunity to engage in physical action. The fact that all of the movement observed was in the high-power and not low-power conditions suggests, consistent with Galinsky and colleagues (2003), our effects are tied to the need to act by high power.

EXPERIMENT 5

Our last experiment aimed to provide a final piece of data in support of our perspective by measuring action orientation and examining its role as a mediator.

Method

A total of 120 participants from the United States were recruited via Amazon’s Mechanical Turk and participated in exchange for a small monetary incentive. Six participants were excluded from analyses because they did not finish the experiment or they failed to follow instructions. Our final sample included 71 men and 43 women with an average age of 33 years. Ninety-six participants were European American, whereas the remaining 18 participants were African American, Asian American, Hispanic American, or other ethnicities. As for the socioeconomic distribution of the sample, 57.9% of participants reported annual incomes less than $50,000, and 43% reported high school as their highest level of education.

Participants first completed the same episodic priming manipulations of power used in previous experiments. Immediately after the recall task and the manipulation check, to measure participants’ action orientation, we asked participants to indicate the extent to which they (1) felt like doing something right now, and (2) had a strong desire to take action right now, on 9-point scales (1 = “extremely disagree,” 9 = “extremely agree”). The two measures of action orientation were correlated (r = .79) and averaged to create an index of action orientation.

As part of a supposedly unrelated task, participants read the internet service provider scenario used in experiment 3. After reading the scenario, participants were asked to indicate their preferences between two options: Option A was to “continue to use company A’s internet service”; option B was to “switch to company B’s internet service,” on a 10-point scale (1 = “strongly prefer option A,” 10 = “strongly prefer option B”).

Results

Manipulation Check. Participants reported feeling more powerful in the high-power condition (M = 6.44) than in the low-power condition (M = 5.11; F(1, 112) = 12.58, p = .001).

Switching. Replicating previous experiments, high-power participants indicated a greater preference for switching than those in the low-power condition (M = 5.12 vs. 3.39, respectively; F(1, 112) = 14.83, p < .001).

Action Orientation. Participants in the high-power condition showed a higher level of action orientation than those in the low-power condition (M = 6.72 vs. 5.31, respectively; F(1, 112) = 22.85, p < .001).

Mediation Analysis. Variables were mean centered and standardized prior to analyses. Following procedures outlined by Baron and Kenny (1986), regression analyses showed that power significantly influenced both action orientation (β = .412, p < .001) and brand switching (β = .342, p < .001). Action orientation also affected brand switching (β = .538, p < .001). However, when action orientation was introduced as an additional predictor, the previously observed effect of power on brand switching was no longer significant (β = .145, p = .098). Furthermore, a test of the significance of the indirect effect (i.e., the path through the mediator) using bootstrapping procedures (Preacher, Rucker, and Hayes 2007) revealed the indirect effect was significant (95% CI: .11 to .31).

Discussion

Experiment 5 further supports our theoretical perspective by demonstrating that the effect of power on consumer switching behavior was mediated by action orientation.
GENERAL DISCUSSION

In a recent review of the power and consumption literature, Rucker et al. (2012) suggested that it was important for future research to understand how processes associated with power can inform a broad variety of consumption behaviors. The present research responds to this call to action by investigating the effect of power on an important marketing phenomenon: consumer switching behavior. Across six experiments, we provide convergent evidence that incidentally heightened states of power influence consumer switching behavior. Placing consumers in a high state of power leads to a greater propensity to engage in product/brand switching in a variety of contexts (experiments 1–5). The effect of this power-activated action orientation was also decoupled from a desire for variety (experiment 2), reversed when greater action was associated with not switching (experiment 3) and sated by performing physical action (experiment 4). Finally, mediational analyses demonstrated the effect of power on switching was mediated by action orientation (experiment 5).

Contributions and Implications

The current article contributes to the marketing literature by documenting consumers’ psychological state of power as a new psychological determinant of switching behavior. The present work adds to past research recognizing that psychological factors can affect switching behavior (e.g., Drolet 2002; Kahn 1995; Raju 1980, 1984; Redden 2008), and reinforces that variables beyond marketing mix factors (such as price or promotion) can affect consumers’ product/brand switching tendency. This article provides the first demonstration that perceived psychological power affects consumer switching behavior, and we hope it will stimulate further research toward a deeper understanding of the psychological factors that influence consumer switching behavior.

Furthermore, past work in the brand switching literature can be viewed as being consistent with the proposition that brand switching involves an effortful cognitive process (e.g., Nowlis and Simonson 2000). In order to decide whether or not to switch to a new brand, consumers need to obtain enough information from both brands, compare the pros and cons of each, and then make a decision aimed at maximizing their expected utility. Though certainly this is true in some situations, consumers may not always behave in this way. In fact, consumers’ switching behavior might also happen in a fairly low-effort fashion. Results of our studies showed that consumers may choose to switch brands or products not because they think their current brand/product is worse than the new one but simply because of the action involved in the process of switching. This pushes the door open for researchers to consider how other incidental factors may affect brand switching.

The present work also has implications for the power literature. In previous research, Galinsky and colleagues (Galinsky et al. 2003; see also Keltner et al. 2003) found that high power activates action orientation in power holders. This provocative finding has inspired numerous articles on power. Nevertheless, prior to the present work, it remained murky as to what exactly is activated when people think of power. The current research speaks to this by suggesting that power can activate a goal toward action that can in turn be sated or fulfilled by physical actions (experiment 4). This finding provides initial evidence consistent with a goal priming explanation for the effect of power on action.

Future Directions

We believe the current research also raises exciting issues for future research. A first direction arises from what might initially be viewed as an inconsistency between experiments 1b and 2 in comparison with experiment 4. Specifically, experiments 1b and 2 found that the increased tendency for high-power participants to switch continued throughout the task, whereas experiment 4 showed that a physical action eliminated this tendency. One might wonder, if the need for action can be sated, why did participants’ first switch in experiments 1b and 2 and not eliminate subsequent switching? We believe this represents an important question for future research, and here we speculate on several key moderators that may explain this apparent discrepancy.

First, whether any given action satiates the need for action may depend on characteristics of the construct of “action.” In experiment 1b and 2, the initial action was psychological (i.e., the decision to switch a brand), whereas in experiment 4 participants performed a substantial physical action (i.e., squeezing a rubber ball for 30 seconds). A qualitative difference may exist between physical and psychological action such that physical action provides a more direct sense of action; thus, it provides a stronger signal of goal completion. As such, physical actions may be prone to satiate the goal to act more than psychological ones. Whereas the physical action in experiment 4 may have signaled completion of the goal, the psychological actions taken in experiment 1b and 2 were simply not sufficient. Alternatively, the difference between physical and psychological actions may be purely quantitative. That is, even though the amount of action involved in making a mental decision may typically be less than that of a physical movement, enough effort in a mental decision may foster a sense of greater action than a physical action. Consequently, with proper calibration, even psychological actions may sate a consumer’s need for action. Teasing apart these two accounts, and better examining the difference between physical and psychological action, seems to be a fruitful topic for future research.

Another interesting question that follows the psychological versus physical nature of action is whether or not we would observe repeated switching, as opposed to one-time switching, with real behavior. That is, if a consumer engages in actual physical action, as in experiment 4, this may sate their need to switch, rendering it hard to find repeated switching behavior when real action occurs. Although this is a possibility, we suspect that we may see repeated switching even when the initial behavior involves physical action. First, consistent with the idea that the amount or quantity...
of action may matter for satiation, some physical actions, such as picking a different yogurt off the shelf, may not be enough to quell the need for action. Second, people who are chronically high in power, for example those who occupy a powerful position at work, might engage in a switching behavior but subsequently be reminded of their power and thus require action once more. If power is continually activated or made salient, then even an initial satiation of this need may not last for long. We believe both of these ideas represent promising directions for future research.

Our findings also raise a more general question of whether any form of action can satiate the action goal primed by power or whether it takes very specific type of action. For example, in experiment 4, the action goal was satiated when participants performed the ball-squeezing action. Past research suggests that clenching one’s fist can active a sense of power (Schubert 2004; Schubert and Koole 2009). Would our results hold if a different type of action was involved (e.g., rolling the ball or petting the ball gently)? Again, one possibility is that amount of action, not type of action, is the critical component in whether the goal for action is sated. Alternatively, action-oriented goals that relate to power might resonate better with the specific need for action produced by high power. The answer to this question is unclear at present, but we believe it is an excellent direction to explore.

Last but not least, an important direction for future work is to understand natural antecedents of power in the marketplace that might affect switching behavior. As one salient example, social status is a correlate of power (for discussion, see Rucker et al. 2012); those with higher social status often have more power. Given the extensive usage of social class in market segmentation practice (e.g., Coleman 1983; Dickson and Ginter 1987), our findings provide a potential implication to marketers and policy makers. Marketers and policy makers have designed strategies specifically to utilize consumers’ preference to maintain status quo. For example, setting “donation” as the default option on organ donating forms increased organ donation dramatically (Johnson and Gollwitzer 2003), our findings provide a potential implication to marketers and policy makers. Marketers and policy makers have designed strategies specifically to utilize consumers’ preference to maintain status quo. For example, setting “donation” as the default option on organ donating form increased organ donation dramatically (Johnson and Goldstein 2003). Similarly, Park, Jun, and MacInnis (2000) found that participants kept more optional features for a car when the optional features were included by default and had to be removed as opposed to when the same features were not included by default and had to be added. While these strategies have been proven useful, our research suggests that it may not suit everyone. For high social status consumers who may enjoy the feeling of high power chronically, the nondefault option may sometimes be a better lure for them. Specifically, based on the present findings, they may engage more in behaviors that foster a sense of action via switching from the default.

CONCLUSION

Consumer switching behavior is an important phenomenon, but also likely to be a complex one with many determinants. The present research has argued for the importance of studying psychological power as a new construct that can exert an influence on whether or not consumers switch brands or products. In doing so, we not only have learned something about consumer switching behavior, but also something fundamental to the action orientation of high power itself: power does not create a desire for action that rolls down the hill building momentum like a snowball; rather, it creates a need that can be sated.

DATA COLLECTION INFORMATION

The first and the second authors jointly supervised the data collection and analyzed the data for the six studies reported. Study 1a was conducted in the fall of 2010; study 1b was conducted in the summer of 2011; and study 4 was conducted in the fall of 2011, by research assistants of the Laboratory of Applied Business in the Hong Kong Polytechnic University. Studies 2, 3, and 5 were conducted online using Amazon’s Mechanical Turk in the summer and fall of 2013.

REFERENCES

